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Abstract 

 

The multi-angle imaging spectroradiometer (MISR) instrument is designed to provide global 

imagery at nine discrete viewing angles and four visible/near-infrared spectral bands. The MISR 

standard products include vegetation green leaf area index (LAI) and fraction of photosynthetically 

active radiation absorbed by vegetation (FPAR). These parameters have been routinely processed at 

the Langley ASDC since October 2002. This paper presents a research related to the transition of 

the MISR LAI/FPAR product from the beta to the provisional status. The quality and spatial 

coverage of the MISR Land Surface Reflectances input to the algorithm determine the quality and 

spatial coverage of the LAI and FPAR products. Considerable efforts, therefore, has been expended 

to analyze the performance the algorithm as a function of uncertainties in the MISR surface 

reflectances. An additional goal of the MISR LAI/FPAR algorithm is the classification of 

vegetation in terms of biome types, a parameter that usually is specified as an input for other 

LAI/FPAR algorithms that use single-angle observations. It was shown that the use of multi-angle 

data allows the algorithm to minimize the biome misclassification when this has a significant effect 

on LAI retrievals. As a result, with a high probability, uncertainties in LAI retrievals due to the 

biome misclassification do not exceed uncertainties in observations. Considerable attention was 

also paid to characterizing the quality of the LAI/FPAR parameters and this information is 

available to the users as quality assessment indicators accompanying the product. Inspection and 

analysis of the MISR LAI/FPAR product demonstrate that the successfully retrieved LAI and 

FPAR values follows regularities expected from physics. The provisional LAI/FPAR algorithm 

realizes the basic principle of  retrieval techniques, i.e., the more information that’s available and 
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the more accurate this information is, the more reliable and accurate the algorithm output will be. 

Improvements to the quality of the land surface reflectances, therefore, will automatically lead to 

better quality of LAI and FPAR retrievals. 

 

INTRODUCTION 

 

The multi-angle imaging spectroradiometer (MISR) is an instrument on board the EOS-Terra 

platform. MISR makes global observations of the Earth's surface at 1.1 km spatial resolution with 

the objective of determining the atmospherically corrected reflectance properties of most of the 

land surface and the tropical ocean (Martonchik et al., 1998). The basic land surface parameters 

currently being generated at the NASA Langley Atmospheric Science Data Center (ASDC) include 

the spectral hemispherical-directional reflectance factor (HDRF) at the nine MISR view angles and 

the associated bihemispherical reflectance (BHR). The hemispherical directional reflectance factor 

(HDRF) and the bihemispherical reflectance (BHR) characterize surface reflectance under ambient 

sky conditions, i.e., direct and diffused illumination. The bidirectional reflectance factor (BRF) and 

the directional hemispherical reflectance (DHR) are defined for the unique case when the 

atmosphere is absent. An algorithm to produce vegetation green leaf area index (LAI) and fraction 

of photosynthetically active radiation absorbed by vegetation (FPAR) from BHR and BRF 

(Knyazikhin et al., 1998) become operational in October 2002. An additional goal of the MISR 

LAI/FPAR algorithm is the classification of vegetation in terms of biome types, a parameter that 

usually is specified as an input for other LAI/FPAR algorithms that use single-angle observations. 

In this paper, we provide an analysis of the performance of the provisional MISR LAI/FPAR 

algorithm.  
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         The quality and spatial coverage of BHR and BRF determine the quality and spatial coverage 

of the LAI and FPAR products. Therefore, we start with the description of MISR data and an 

analysis of uncertainties in the MISR surface reflectances followed by a discussion of some of the 

spatial scaling issues associated with the MISR LAI/FPAR algorithm. A special attention is given 

to analyze the performance the algorithm as a function of uncertainties in the MISR BHR and BRF 

as well as to develop indicator flags characterizing the retrieval quality. 

 

MISR DATA 

 
The MISR data distributed from the NASA Langely Atmospheric Sciences Data Center were used 

in this study. The MISR data are in the format of path (swath) and orbit. About 233 paths cover the 

earth; each path is about 360 km wide from East to West. The orbit marks the path data from 

different dates. 

         The MISR Level 2 Surface Parameters Product contains information on land surface 

directional reflectance properties, albedos, both spectral and PAR integrated, FPAR, associated 

radiation parameters and terrain referenced geometric parameters. These data, in HDF format and 

at 1.1 km spatial resolution, are the source of BRFs, HDRFs, DHRs and BHRs (expansion of 

abbreviation is given in a list at the beginning of this article). 

         The view angles at the surface for each of the nine MISR cameras, as well as the incident 

solar angle at the surface are contained in the MISR Geometric Parameters Product. This 

information is at a spatial resolution of 17.6 km, and is an input to the LAI/FPAR algorithm. The 

latitude and longitude information is contained in the MISR Ancillary Geographic Product (MISR 

Interface Control Document). 
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         An at launch MODIS six-biome map, was used to identify the pixel biome type. The six 

biomes are grasses and cereal crops, shrubs, broadleaf crops, savannas, broadleaf forests and 

needleleaf forests. The upper-left and bottom-right latitude and longitude of the MISR data block 

are used as georeferences to reproject the biome map to MISR SOM-j projection.  

         MISR data from Africa were selected for this investigation as in situ LAI and FPAR 

measurements were available from several sites in Southern Africa (Privette et al., 2001; Tian et al., 

2002). These field data, although collected in 2000, are valuable for estimating certain algorithm 

parameters, as will be detailed elsewhere in this article. In particular, we concentrate our analysis 

on Southern Africa and MISR data from March 2001 - the earliest period for which the MISR 

LAI/FPAR products are available. 

         The repeat cycle of MISR coverage is 9 days. But in view of cloud cover, data from an entire 

month are required to obtain full coverage of Southern Africa. Assembling the data set in this 

fashion meant that we were assuming minimal canopy changes during this month, and this will 

introduce uncertainty in the derived results. This uncertainty will be assessed during the course of 

this investigation.  

         The moderate spatial resolution, multispectral and multiangle aspects of MISR imply large 

data volumes and hence the need for analysis stratified by biome type. Raw data, which were 

corrupted or with incorrect geometry information (negative angles) were excluded from analysis. 

Likewise, invalid reflectance data, for example, BHRs greater than 1, were ignored. A schematic of 

the data processing is shown in Fig. 1. 

         The MISR data from path 162 to 203 were used in this study and these cover Africa. The ratio 

of pixels with valid data to the total number of pixels is shown in Fig. 2, separately for different 

biomes. In general, the data from each path are from different days. About 42% of the pixels 
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contain valid data, useful as inputs to the algorithm. This number changes by date and by biome 

type, and may be as low as 36% in the case of broadleaf forests, where cloud cover is persistent.  

 

DATA ANALYSIS 

 
The nominal view angles for the nine cameras are 0.0, +/- 26.1, +/- 45.6, +/- 60.0 and +/- 70.5 (in 

degrees). The variation in actual view angles relative to the specification, for the fore and aft off-

nadir sensors, is presented in Fig. 3. The maximum deviation in view zenith angles is for camera A 

fore and aft (4.95 and 4.84 degrees) respectively. This deviation decreases with increasing view 

zenith angle. Most of the deviations are positive, reasons for which are not known. These variations 

contribute to uncertainty in the LAI/FPAR retrievals. 

         Uncertainties in land surface reflectance determine the quality of LAI and FPAR retrievals 

(Wang et al, 2001). Calibration and processing for atmospheric effects of the measured radiance 

induce uncertainties in the surface reflectance products. Land surface reflectance parameters, 

HDRF and BHR, are inputs of the LAI/FPAR algorithm. Therefore, the uncertainties in MISR 

surface reflectance product are evaluated below. 

         MISR surface reflectance data are first sorted according to biome type. Data density 

distribution functions, defined as the number of pixels per unit area in the red-NIR space, are 

evaluated for each biome type. Pixels located around the data peak, i.e. the maximum pixel 

number, can be interpreted as the set of pixels representing the most probable pattern of canopy 

structure. As an example, the data density distribution function for broadleaf forests is shown in 

Fig. 4a. These pixels are selected for further analysis. 

         The mean and standard deviation of the HDRFs and BHRs are shown in Figs. 4b-d, for 

different biomes. Uncertainties in HDRFs are larger at large view angles (except the A camera), 
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and greater for the near-infrared channel in comparison to the red channel except the uncertainties 

in angle nine (standard deviations in Red band for the nine view angles, from angle 1 to angle 9 are 

0.031, 0.019, 0.015, 0.016, 0.016, 0.014, 0.013, 0.019, 0.042; standard deviations in NIR band for 

the nine view angles are 0.033, 0.026, 0.024, 0.023, 0.024, 0.019, 0.017, 0.022, 0.040). The 

uncertainties are generally similar in the fore and aft angles. The BHR magnitudes with respect to 

biome type, shown in Fig. 4d, display expected behavior. In the red channel, shrubs are brighter 

and the BHR magnitude decreases with increasing tree cover. In the near-infrared, the opposite is 

seen. Although the uncertainties are generally comparable at both wavelengths, they are 

considerably larger in the red channel on a relative basis (uncertainties in Red band is 0.0055, 

0.0054, 0.0055, 0.0056, 0.0029 for the five biomes respectively versus uncertainties in NIR band of 

0.0056, 0.0055, 0.0056, 0.0056, 0.0056). 

The uncertainties in Figs. 4b-d may result from variations in view angles (for HDRF), variation 

in vegetation canopy structure and due to atmosphere correction. Deviation from nominal view 

zenith angle certainly impacts the HDRF values, because the HDRF is view angle dependent. But, 

such uncertainties are likely to be small because view angle variations were small (Fig. 3). 

Vegetation cover type mixture may also contribute to uncertainties in reflectance data. 

Variations in canopy structure due to biome mixtures are minimized by selecting pixels around the 

data peak. These pixels may be considered representative of a biome type with minimal mixing. 

Therefore, uncertainties due to biome mixture are unlikely to cause the variations seen in Figs. 4b-d. 

Thus uncertainties in input BHR and HDRF remain even after excluding the minor uncertainties 

due to variations in MISR view zenith angle, cover type mixtures and further assuming minimal 

biome classification error. Such intrinsic uncertainties may be the most significant uncertainties of 
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the MISR surface reflectance product. There may be due to atmospheric correction, and this is 

further investigated in the following temporal analysis. 

         In this method, we assume the vegetation structure to remain unchanged during the month of 

March. The coefficients of variation (standard deviation divided by the mean) in Blue, Red, and 

NIR bands from three different days from path 178 are shown in Fig.5 for different biomes. The 

histogram is widely scattered especially in the blue band of grasses/cereal crops and broadleaf 

forests, which is likely due to correction for atmospheric effects. Likewise, the histograms are 

broad at the red band, especially in the case of broadleaf forests. The most probable value of the 

coefficient of variation is least for the NIR band (about 0.15 for grasses/cereal crops, about 0.4 for 

broadleaf forests).  

         Only three different days of data were available in March and it is clear that this sample is 

insufficient to analyze a random variable, especially to characterize its standard deviation. At least 

in the case of broadleaf forests, the LAI does not change much during the peak green season. 

Therefore, variation in canopy structure can be excluded for this cover type. The large uncertainties 

here may be due to errors in pixel geolocation, or may be due to atmospheric correction. 

         From the comparison presented in Fig. 6, between the uncertainties derived from spatial 

analysis and temporal analysis, it is obvious that uncertainties from the temporal analysis are 

greater than the uncertainties from spatial analysis for most biome types, with the exception of 

shrubs, where both kinds of uncertainties are similar in both bands. The uncertainties of the 

temporal analysis are significant and they are taken as the upper bounds in our LAI/FPAR 

retrievals. 
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SCALING OF THE ALGORITHM 

 

In the MISR LAI/FPAR algorithm, the three-dimensional radiative transfer equation is used to 

simulate canopy reflectances as a function of biome type, sun-view geometry and canopy/soil 

patterns. Global vegetation is stratified into six canopy architectural types or biomes in this 

approach to LAI/FPAR retrievals. The structural attributes of these biomes are parameterized in 

terms of variables that the radiative transfer equation admits (Myneni et al., 1997). The six biomes 

are grasses and cereal crops, shrubs, broadleaf crops, savannas, broadleaf forests and needleleaf 

forests. The transport equation was adjusted to model canopy reflectances of the six biome types at 

30 m spatial resolution, which is taken as the reference resolution. However, when the spatial 

resolution of the imagery becomes significantly coarser than 30 m, both the degree of biome 

mixing within a pixel and the number of mixed pixels in the imagery increases. An investigation of 

the effect of land cover mixtures within a pixel shows that LAI retrieval errors are inversely related 

to the proportion of the dominant land cover type in the pixel if the within pixel heterogeneity is 

not accounted by the retrieval technique (Tian et al, 2002a and 2002b). Errors are particularly large 

when forests are minority biomes in non-forest pixels compared to when forest biomes are mixed 

with one another, and vice-versa. Thus, the retrieval algorithm must be adjustable, to allow for 

spatial scale effects. Here we follow a technique developed by Tian et al (2002c), which accounts 

for pixel heterogeneity through modifications to the single scattering albedo that the radiative 

transfer equation admits through the use of land cover fractions.  

         To specify appropriate values for the single scattering albedo, the MISR DHRs corresponding 

to the peak green season are located in the red-NIR spectral space for each of the biome types (Fig. 

4a). Pixels located around the data peak can be interpreted as the set of pixels representing the most 
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probable pattern of canopy structure. Neglecting contribution of the surface underneath the canopy, 

the most probable value of DHR at wavelength λ is related to canopy transmittance and 

absorptance at this wavelength as 
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Here ωλ is the single scattering albedo defined as the ratio of energy scattered by the elementary 

volume formulated for the radiative transfer equation, to energy intercepted by this volume; q is the 

probability that a photon in the incident radiation will arrive at the bottom of the canopy without 

suffering a collision (uncollided radiation), ωλpt and ωλpi are portions of collided radiation in total 

radiation transmitted and intercepted by the vegetation canopy, respectively (Shabanov et al., 2002; 

Wang et al., 2002). The wavelength independent parameters q, pt, and pi are functions of LAI. 

Equation (1) expresses the energy conservation law, namely, radiation absorbed by a vegetated 

surface (the left-hand side) is the sum of radiant energy absorbed by the underlying surface and 

vegetation (the first and second terms on the right-hand side of equation (1), which are the canopy 

transmittance, ,bst λ , and absorption calculated for the case of a black surface underneath the 

canopy). In the case of a reflecting Lambertion surface, the term λλ
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subtracted from the left-hand side of equation (1) to account for the contribution of the ground to 

the canopy leaving radiation (see equation (41) in Knyazikhin et al, 1998). Here λρ is the 

reflectance of the underlying surface; ,st λ and ,sr λ  are fractions of radiation transmitted and 
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reflected by the vegetation canopy if it were illuminated from below by an isotropic source 

(Knyazikhin et al, 1998). 

         Leaf area index values corresponding to the most probable canopy realization must be known 

in order to calibrate the algorithm, and this is usually accomplished through field measurements. 

Given biome type and LAI, as well as measured DHRλ, and modeled q , tp and pi corresponding to 

this LAI value, the algorithm is then adjusted for data resolution by finding values of the single 

scattering albedo λω which provide the best agreement between the left and right sides of equation 

(1). Values of DHR for Africa, obtained from MISR retrievals (1-23 March 2001) and field 

measurements made during the SAFARI 2000 wet season campaign (3-18 March 2000) and the 

Operation Canopy La Makande’99 campaign (2-10 March 1999) (Panferov et al, 2001), were used 

to scale the LAI/FPAR algorithm to the MISR resolution. A MODIS biome classification map was 

used to sort the MISR DHR data into individual biome classes. The spectral ground reflectance λρ  

is assumed to vary within given biome-dependent ranges representative of reflective properties of 

the most probable surfaces underneath the canopy (Knyzikhin et al, 1998).  

         The above method is followed to scale MISR LAI/FPAR algorithm. The most probable data, 

which have the minimal variations in vegetation structure, are used as the input data. Figure 7a 

shows locations of the most probable values of (1- DHRλ) at red and NIR wavelengths, for different 

biomes. The algorithm is adjusted for data resolution by finding values of the single scattering 

albedo which provide the best agreement between the retrieved and measured LAI values. The 

solutions to this problem are shown in Fig. 7b. These single scattering albedos are used by the 

operational MISR LAI/FPAR software. Fig. 7c shows histograms of LAI retrievals for grasses & 

cereal crops and broadleaf forests, which are centered at about 1.5 and 5.0, respectively. These 

mean values agree well with LAI measured in the field (Myneni et al, 2002; Privette et al, 2002). 
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PERFORMANCE OF THE ALGORITHM AS A FUNCTION OF UNCERTAINTIES 

 

At least two types of uncertainties influence the quality of retrievals uncertainties in the land 

surface reflectance product and in the model used to simulate surface reflectance. In general, these 

uncertainties set a limit to the quality of retrievals; that is, accuracy in the retrievals cannot be 

better than summary accuracy in data and the model. If uncertainties are ignored, it can result not 

only in the loss of information conveyed by the algorithm, but also can result in its destabilization 

(Wang et al., 2001). Thus, the use of uncertainty information in the retrieval technique can 

influence the quality of retrievals. An overall uncertainty in model and measurements is input to the 

MISR LAI/FPAR retrieval technique (Knyazikhin et al., 1998). The aim of this section is to 

empirically estimate an upper limit of acceptable uncertainties in data and observations which 

provides optimal performance of the algorithm.  

Let Ak and rk,i, k=1, 2, …,4, i=1,2, …, 9, be atmospherically corrected BHRs at four spectral 

bands and BRFs at four spectral bands and in 9 MISR directions, respectively. We treat these 

values as independent random variables with finite variances σA(k)2 and σr(k,i)2 k=1, 2, …,4, i=1,2, 

…, 9, and assume that the deviations )(/)( kAA Akkk σε −=  and ),(/)( ,,, ikrr rikikik σδ −=  follow 

Gaussian distributions. Here kA  and ikr ,  are the mathematical expectations of Ak and rk,i which are 

treated as “true values.” The random variables  
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characterizing the proximity of atmospherically corrected data to true values have chi−square 

distributions. Here Nbands and Nview are numbers of spectral bands and view directions for which the 

MISR observations are available. Inequalities bands
2 NA ≤χ  and viewbands

2 NNr ≤χ  indicate good 

accuracy in the atmospherically corrected surface reflectances with a high probability. Dispersions 

σA(k) and σr(k,i) are uncertainties in the land surface reflectance product which are input to the 

MISR LAI/FPAR algorithm. Model uncertainties, σA,m(k) and σr,m(k,i) can be defined in a similar 

manner (Wang et al., 2001). Note that currently the MISR algorithm uses two spectral bands, red 

and NIR (Nbands=2) to retrieve LAI and FPAR. 

Overall uncertainties in BHR, δA(k), and BRF, δr(k,i) which guarantee the convergence 

property of the retrieval technique (i.e., increasingly accurate retrievals with increasingly accurate 

inputs) can be represented as δA(k)2 = [σA(k)2 + σA,m(k)2]/θA
2, δr(k,i)2 = [σ(k,i)2 + σr,m(k,i)2]/θr

2. 

Here stabilization parameters θA and θr vary between 0.5 and 1 (Wang et al., 2001). To evaluate 

proximity of observed to modeled surface reflectances, true values kA , ikr , , and uncertainties in the 

surface reflectance product σA(k) and σr(k,i) that appear in equations. (2) and (3) should be 

substituted with modeled reflectances and overall uncertainties (Wang et al., 2001). We assume 

that the model uncertainties do not exceed uncertainties in observations; that is, σA,m(k)/σA(k) < 1 

and  σr,m(k,i)/σ(k,i) < 1. The overall uncertainties in BHR and BRF can be represented as 

δA(k) = (αA/θA)σA(k) and δr(k,i) = (αr/θr)σr(k,i), respectively. Here the coefficients αA and αr vary 

between 1 and 2. A correct specification of the ratios γA = (αA/θA) and γr = (αr/θr), each varying 

between 1 and 4, are required to derive LAI and FPAR of the highest possible quality (Wang et al., 
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2001). Based on the above arguments, we will evaluate upper bounds of γA and γr which provide 

optimal performance of the algorithm. Standard deviations derived from spatial analysis (Figs. 4b-

d) are taken as lower bounds of uncertainties in the observations.  

The MISR algorithm retrieves LAI and FPAR values using a two-step process. The first step 

involves a comparison of the MISR BHR with those determined from a suite of canopy models, 

which depend on biome type, canopy structure, and soil/understory reflectances. All canopy, soil 

and biome patterns for which modeled and observed BHRs at the four spectral bands differ by an 

amount equivalent to or less than the uncertainty in model and observations are considered as 

acceptable solutions. FPAR is also calculated for each acceptable solution. For each biome pattern 

bio, bio = 1, 2, ... , 6, the algorithm then evaluates mean LAI1(bio) and FPAR1(bio) over acceptable 

solutions, their dispersions, ∆LAI 1(bio), ∆FPAR1(bio), and number Nsol,1(bio) of acceptable 

solution. Equation (2) with overall uncertainties in modeled and observed BHRs is used to execute 

the first step. The biome, canopy, and soil patterns that pass this comparison test are subject to the 

second step, which is comparison of directional signatures of modeled and observed BRFs. And 

again, for each biome type, mean LAI2(bio) over acceptable solutions, its dispersion, ∆LAI 2(bio) 

and number Nsol,2(bio) of acceptable solutions are evaluated. Equation (3) with appropriate overall 

uncertainties is used to execute the second test. For each 1.1 km MISR pixel within which 

BHR/BRF retrieval was performed, LAI1(bio), ∆LAI 1(bio), Nsol,1(bio), LAI2(bio), ∆LAI 2(bio), and 

Nsol,2(bio), bio=1,2,...,6, are archived in the Aerosol/Surface Product. The FPAR is evaluated and 

archived for each 17.6 km region.  

An additional goal of the MISR LAI/FPAR algorithm is the classification of vegetation in 

terms of biome types described in the previous section, a parameter that usually is specified as an 

input for other LAI/FPAR algorithms that use single-angle observations. Based on the output 
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archived, the following biome identification algorithm will be examined here. Assuming that more 

than one of the candidate biomes passes the second test (the comparison of retrieved and modeled 

directional reflectances), the biome type with the minimum coefficient of variation (∆LAI 2/LAI 2) 

of LAI (COVLAI) is chosen as being most representative of the observed vegetation type. If the 

same minimum COVLAI is found for more than one biome type, then the biome type with the 

smallest mean LAI is chosen. If this process fails to identify a unique biome type, the retrieval is 

classified as unsuccessful.  

An analysis presented earlier has showed that uncertainties in the surface reflectances can be 

quite high (Figs. 4 and 5). Figure 2 shows availability of valid MISR surface reflectances which, on 

average, constitute 42% of the vegetated land for the selected paths. A subset of these surface 

reflectances whose uncertainties exceed a certain acceptable level will result in algorithm failure, 

reducing the number of successful LAI and FPAR retrievals. This number can be increased by 

setting the ratios γA and γr to higher values. The retrieval quality, however, will decrease in this 

case. A decrease in γA and γr will result in fewer successful retrievals. It should be emphasized that 

this does not necessarily improves the retrieval quality. In general, the underestimation of the 

overall uncertainties can result in lower retrieval quality than their overestimation (Wang, 2001). 

Our aim here is to evaluate optimal values of γA and γr which allow the algorithm to discriminate 

between pure biome types, to minimize the impact of biome misidentification on LAI retrievals, 

and to maximize the number of successful retrievals.  

Two variables are used to characterize the algorithm performance as a function of 

uncertainties. The first, is the retrieval index (RI), defined as the ratio between the number of 

retrieved LAI values and the total number of pixels with valid surface reflectance data. This 

variable does not characterize the retrieval quality, but shows the spatial coverage of the retrieved 
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LAI and FPAR fields. The second, is the biome identification index (BI), the ratio of the number of 

cases for which the algorithm correctly identifies the biome type to the number of successfully 

retrieved pixels.  

The following procedure was executed to specify optimal values of the overall uncertainties. 

For each biome type, pixels located around the data peak were selected (Fig. 4a). Given values of 

the ratios γA and γr for each biome type, the MISR LAI/FPAR algorithm was executed using these 

surface reflectances and the six-biome map described earlier. Next, from the initial set of pixels we 

select those that passed the first and/or second compression tests. A Quality indicator of the 

Algorithm (QA) is assigned to each pixel, indicating that a retrieval passed both comparison tests 

(QA=0, highest quality), the first test only (QA=1, intermediate quality), or the second test only 

(QA=2, low quality). The RI as a function of QA and biome type is also calculated. The biome 

identification algorithm is then applied to the new set of pixels and the BI as a function of QA is 

calculated. Within this procedure, the RI is the conditional probability of retrieving a LAI value 

given biome type, while the BI is the probability to identify the biome type. By calculating 

RI(γA,γr,bio,QA) and BI(γA,γr,bio,QA) for all possible combinations of the ratios γA and γr, one 

selects those which result in the maximum to the following performance index (PI), 
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In this procedure, relative values νA(k,bio) = δA(k,bio)/Ak  and νr(k,i,bio) = δr(k,bio)/rk,i were used to 

parameterize the overall uncertainties in the model and observations. Given relative uncertainties, 
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the MISR LAI/FPAR algorithm approximates actual overall uncertainties as δA(k,bio) = νA(k,bio)Ak 

and δr(k,i,bio) = νr(k,i,bio)rk,i which are taken as acceptable levels of uncertainties.  

Figures 8a-c show RI(bio,QA), BI(bio,QA) and PI(bio,QA) for the optimal set of relative 

overall uncertainties whose values are listed in Tables 1 and 2. With the expectation of broadleaf 

crops, the algorithm retrieves LAI values with a very high probability, if information about the 

biome type is available and uncertainties in input do not exceed the acceptable level. The 

probability of identifying pure biome types is quite high if both tests were successfully executed 

with the exception of broadleaf crops and savannas (Fig. 8b, bars labeled "QA=0"). If uncertainties 

in BRFs exceed the acceptable level and, as a consequence the second test fails, the probability of 

identifying grasses/cereal crops, shrubs, savannas and broadleaf forests based on BHRs only is 

greatly reduced (Fig. 8b, bars labeled "QA=1"). The first comparison test tends to extract 

information about canopy structure conveyed by the location of biome type in the spectral space. 

Although the locations of pure biome types in the spectral space are localized (Fig. 4d), the 

uncertainties in BHRs do not allow the algorithm to take full advantages of this property. Their 

effect is most pronounced in the case of spectrally similar biomes like broadleaf crops and 

savannas (Fig. 4d). Thus, the inclusion of additional angular information can compensate for the 

loss of information due to uncertainties in input surface reflectances. Values of the BI 

corresponding to QA=2 are higher compared to those derived from the first test only, with the 

exception of broadleaf crops (QA=1). This suggests that the angular signature of vegetation 

conveys more information about the canopy structure than the location of BHRs in the spectral 

space, at least, for the data investigated here. However, as will be shown later in this paper, the use 

of BRFs only result in a lower retrieval quality, as compared to when the first test only or both tests 

are triggered to retrieve LAI values. This is because an increase in the amount of angular 
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information not only increases the information content but also decreases the overall accuracy in 

the data. The former enhances quality of the retrievals, while the latter suppresses it. A failure of 

the algorithm to execute the first test indicates high uncertainties in BHR which, propagating 

through the surface retrieval algorithm, result in a poor quality of BRF and, as a consequence, LAI 

retrievals. At the Langley ASDC, the operational version of the algorithm generates LAI and FPAR 

products only for the conditions of QA=0 and QA=1, i.e., the first or both comparison tests must be 

passed.  

 

IMPACT OF BIOME MISIDENTIFICATION ON LAI RETRIEVALS 

 

Figure 8c shows the PI for six biome types. On average, for only about 20% of pixels, both LAI 

and biome type can be simultaneously specified at the optimal level of uncertainties. It means that 

the majority of LAI values are retrieved using incorrect information about biome type. Table 3 

summarizes disagreement between the biome types derived from the MISR LAI/FPAR algorithm 

and the six-biome map described earlier as a function of QA. For given vegetation type, a 

distribution of biomes assigned by the MISR algorithm is shown in rows. The aim of this section is 

to analyze the impact of biome misidentification on LAI retrievals. In other words, what is impact 

of biome misidentification on LAI retrievals.  

To address this question we compare two LAI fields. The first one, produced by the algorithm 

using the biome map as input, is taken as a reference field. The second LAI field was obtained by 

applying the MISR LAI/FPAR algorithm to the same data set without using information on biome 

type. For each pixel for which both retrievals were available, a relative difference, ∆, between 

reference, LAIref, and retrieved, LAIMISR, values was calculated, i.e.,  
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ref

MISRref

LAI

LAILAI −
=∆ .                    (5) 

 

Pixels located around biome dependent data peaks (Fig. 4a) were used to generate these values. 

Figure 9 shows histograms of ∆ as a function of QA for different biome types. Mean values and 

standard deviations of the relative difference ∆ are shown in Table 4. With the expectation of 

shrubs and broadleaf crops, the impact of biome misidentification on LAI retrievals is minimal if 

both comparison tests were executed.  

Histogram of ∆ for shrubs corresponding to QA=1 has two local minimums at ∆ = 0 and ∆ =    

-0.7. This biome was mainly misclassified as broadleaf forests and needle forests (Table 3). 

Reference and retrieved LAI values for which the relative difference was close to -0.7 varied 

around 0.2 and 0.34, respectively. Shrubs exhibit lateral spatial heterogeneity, low to intermediate 

vegetation ground cover, and bright background. The information conveyed about the canopy 

structure is small and a wide range of natural variation in ground cover and soil can result in the 

same value of the BHR. Broadleaf and needle forests with a very low ground cover and bright 

understory can results in similar values of surface reflectances at 1.1 km resolution. The effects of 

biome misclassification on the retrievals, therefore, is maximal if retrievals passed the first test only 

(curve "QA=1" in Fig. 9b). Availability of additional angular information results in a reduced 

disagreement between reference and retrieved LAI values (curve "QA=0" in Fig. 9b). Note that the 

probability of identifying shrubs using angular information only (QA=2) is very high (see Figure 

8b and Table 3). However, the inclusion of LAI retrievals corresponding to QA=2 has no 

significant effect on the PI (see Eq. (4) and Fig. 8a). Note that a failure of the algorithm to execute 
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the first test (QA=2) indicates high uncertainties in BHR which, propagating through the surface 

retrieval algorithm, result in a poor quality of BRF, and, as a consequence, LAI retrievals.  

For other biome types, a disagreement between reference and retrieved LAI values are 

maximal for QA=2 (Table 4). If retrievals passed the first or both comparison tests, the biome 

misidentification, on average, involves an underestimation of LAI values for grasses/cereal crops 

and shrubs, and an overestimation in the case of broadleaf crops, savannas and broadleaf forests 

(see Fig. 9 Table 4). In general, misclassification between distinct biomes has a significant effect 

on LAI retrieval. For example, shrubs are mainly misclassified as broadleaf or needle forests (see 

Table 3, QA=1). The mean relative difference is –0.37 compared to –0.14 when the probability of 

such a misidentification is much lower (see Table 3, QA=0).  

What is the probability that biome misidentification has no impact on LAI retrieval? To 

address this question, we introduce the most probable relative difference as values of ∆ at which its 

histogram achieves its local maximums. One can see from Fig. 9 that many of histograms have two 

local maximums. However, all biomes have a local maximum around ∆ = 0. Table 5 lists most 

probable values ∆  and probabilities of χ≤∆−∆ ||  for different biome types, QA values and 

disagreement level χ.  

For grasses/cereal crops, shrubs, savannas and broadleaf forests, the disagreement between 

reference and high quality retrievals (QA=0) does not exceed 15% with probabilities 97%, 68%, 

71% and 99%, respectively (Table 5). For 81% of savannas, the relative difference corresponding 

to QA=0 and ∆ =0 is about 25%. With the expectation of shrubs, more than 70% of intermediate 

quality retrievals agree with reference values to within 25%. For these retrievals, however, 

probabilities of 25.0|| ≤∆  are reduced. On average, with a probability of 70% and higher, the high 

and intermediate quality retrievals agree with true values to within 25% uncertainties which is close 
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to an overall uncertainty in model and observations (see Tables 1 and 2). Thus, the optimal 

performance of the algorithm minimizes the biome misclassification when it has a significant effect 

on LAI retrievals. With a very high probability, uncertainties due to the biome misclassification do 

not exceed uncertainties in model and observations.  

Note that a biome type is an important input parameter to LAI/FPAR algorithms that use 

single-angle observations. A typical overall accuracy in biome maps is about 70% (Lotsch et al., 

2002) and thus about 30% of LAI retrievals should be treated as unreliable. Pixels impacted by the 

biome misclassification are difficult to identify. The use of angular and spectral signatures of 

vegetations instead of biome map allows us not only to obtain comparable accuracy, but also to 

assign quality flags to retrievals. It should also be noted that uncertainties in the reference LAI field 

are unknown and thus the above analyses do not characterize uncertainties in retrievals. However, 

proximity of the retrieved to the reference LAI field indicates that angular and spectral signatures 

of vegetation provide a sufficient amount of information needed to retrieve LAI values without 

using land cover maps as input.  

It is well known that there is a strong relationship between a vegetation index, such as NDVI, 

and surface parameters such as LAI and FPAR (Asrar et. al., 1984; Tucker and Sellers, 1986; 

Peterson et. al. 1987; Verma et. al. 1993; Myneni and Williams, 1994; Chen, 1996). This 

relationship provides a method to test the physics of retrievals. NDVI values were regressed against 

both LAI and FPAR to ascertain whether the proper relationships were obtained. The NDVI values 

were computed using the MISR nadir view HDRF values in the red and NIR bands. It should be 

emphasized that the LAI values were determined using the MISR algorithm and MISR surface 

reflectances as inputs without using the NDVI. Fig. 10 shows the NDVI-LAI and NDVI-FPAR 

regression curves for grasses and broadleaf forests, based on the MISR data. High quality retrievals 
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(QA=0) were used to derive these curves. The biome specific relationships between retrieved 

LAI/FPAR and NDVI conform to both theoretical and empirical expectations. Fig. 11 shows 

NDVI-LAI relationships for grasses/cereal crops and broadleaf forests corresponding to different 

values of QA. One can see that curves corresponding to QA=2 do not follow regularities expected 

from physics and are mainly outside of the error bars of curves the NDVI-LAI relationships 

derived from high quality retrievals. A failure of the algorithm to execute the first test (QA=2) 

indicates high uncertainties in BHR which, propagating through the surface retrieval algorithm, 

result in a poor quality of BRF, and, as a consequence, LAI retrievals. At the Langley ASDC, the 

operational version of the algorithm will generate LAI and FPAR products only for the condition of 

QA=0 and QA=1. 

 

CONCLUDING REMARKS 

 

The algorithm to retrieve biophysical parameters (LAI, FPAR, biome type) from MISR BHR and 

BRF have been routinely processed at the Langley ASDC since October 2002. This paper presents 

a research related to the transition of the MISR LAI/FPAR product from the beta to the provisional 

status. The quality and spatial coverage of the MISR Land Surface Reflectances input to the 

algorithm determine the quality and spatial coverage of the LAI and FPAR products. Therefore, our 

primary objective is to establish the convergence of the MISR LAI/FPAR algorithm; that is, the 

more the measured information and the more accurate this information is, the more reliable and 

accurate the algorithm output will be. 

Uncertainties in model and measurements are input to the MISR LAI/FPAR retrieval 

technique. An upper limit of acceptable uncertainties in the MISR surface reflectances which 
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allows the algorithm to discriminate between pure biome types, to minimize the impact of biome 

misidentification on LAI retrievals, and to maximize the spatial coverage of retrievals was 

empirically evaluated. Surface reflectances whose uncertainties exceed the acceptable level of 20% 

result in algorithm failure, reducing the number of successful LAI and FPAR retrievals. The data 

analysis indicates that uncertainties in the MISR BHR of dense vegetations at red and blue spectral 

bands can substantially exceed the acceptable level. At these wavelengths, dense vegetations 

exhibit low reflectances. As it is indicated in the Statement Concerning Quality of MISR Level 2 

Aerosol/Surface Products (version v2.2_i4), reliability of land surface retrievals can be low in this 

case. High uncertainties in BHR retrievals over dark vegetation, therefore, can result in algorithm 

failure, reducing the number of successful retrievals.  

On average, for about 20% of pixels, both LAI and biome type can be simultaneously specified 

at the current level of uncertainties in the MISR surface reflectance product. About 80% of LAI 

values are retrieved using incorrect information about biome type. However, the LAI/FPAR 

algorithm minimizes the biome misclassification when it has a significant effect on LAI retrievals. 

With a probability of about 70%, uncertainties in LAI retrievals due to the biome misclassification 

do not exceed uncertainties in observations.  

Considerable attention was also paid to characterizing the quality of the LAI/FPAR parameters 

and this information will be available to the users as quality assessment indicators accompanying 

the product. A Quality indicator of the Algorithm (QA), being used with LAI/FPAR retrievals in 

the current study, takes on values between 0 and 2, indicating that a retrieval passed both 

comparison tests (QA=0, highest quality) the first test only (QA=1, intermediate quality), or the 

second test only (QA=2, low quality). An analyses presented in this paper indicates that, with a 

high probability, the quality indicator correctly reflects retrieval quality. Based our investigation, 
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one can conclude that the LAI/FPAR algorithm realizes the basic principle of any retrieval 

technique, i.e., the more information that’s available and the more accurate this information is, the 

more reliable and accurate the algorithm output will be. Improvements to the quality of the Land 

Surface reflectances, therefore, will lead to better quality of LAI and FPAR retrievals.  
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Table 1. Optimal values of relative uncertainties, Aν , in modeled and observed BHRs. 

Biome Type Grass and Cereal 
Crops 

Shrubs Broadleaf Crops Savanna Broadleaf Forests 

Red 0.2 0.08 0.15 0.4 0.2 
NIR 0.05 0.05 0.05 0.1 0.2 

 
 
 
Table 2. Optimal values of relative uncertainties, rν , in modeled and observed BRFs. 

View Angle Spectral 
band 

Grass and 
Cereal Crops 

Shrubs Broadleaf 
Crops 

Savanna Broadleaf 
Forests 

Red 0.2 0.2 0.15 0.2 0.15 nadir 
NIR 0.2 0.2 0.05 0.2 0.05 
Red 0.2 0.15 0.15 0.2 0.15 Aa, Af 

 NIR 0.2 0.05 0.05 0.2 0.05 
Red 0.2 0.2 0.225 0.2 0.225 Ba, Bf 

 NIR 0.2 0.2 0.075 0.2 0.075 
Red 0.2 0.2 0.3 0.2 0.3 Ca, Cf 

 NIR 0.2 0.2 0.1 0.2 0.1 
Red 0.2 0.2 0.45 0.2 0.45 Da, Df 

 NIR 0.2 0.2 0.15 0.2 0.15 
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Table 3. Disagreement between biome types assigned by the MISR algorithm and the six biome 

classification map used in the study for different values of QA. 

Landcover Type assigned by MISR algorithm, % 
Landcover Type QA Grasses/Cereal 

Crops 
Shrubs Broadleaf 

Crops 
Savannas Broadleaf 

Forests 
Needleleaf 

Forests 
Failure 

0 81 7 4 1 0 0 7 
1 5.49 39.47 14.06 0 0 0 40.98 Grasses/Cereal Crops 

2 29.94 14.48 0.08 0 8.5 35.19 11.81 
0 0.03 38.33 0.91 0.01 13.91 3.37 43.44 
1 0 20 0 0 32 11 37 Shrubs 

2 0 100 0 0 0 0 0 
0 n/a n/a n/a n/a n/a n/a n/a 
1 0 2 69 0 0 29 0 Broadleaf Crops 

2 4 11 16 0.02 18 26 25 
0 42.7 3.3 9.5 37.2 0 6.7 0.6 
1 26 20 31 15 0 7 1 Savannas 

2 n/a n/a n/a n/a n/a n/a n/a 
0 0 0 0 0 100 0 0 
1 0 0 0 77.5 12.5 0 10 Broadleaf Forests 

2 3.9 8.8 9.6 0 16 42.1 20 

 
 
Table 4. Mean values and standard deviations of the relative difference for different biome type and 

QA. 

 
Mean Standard Deviation 

         QA=0 QA=1 QA=2 QA=0 QA=1 QA=2 
Grasses & Cereal Crops -0.01 -0.13 0.20 0.05 0.10 1.68 

Shrubs -0.14 -0.37 0 0.29 0.34 0.00 
Broadleaf Crops n/a 0.45 0.60 n/a 0.73 3.03 

Savannas 0.17 0.05 n/a 0.76 0.68 n/a 

Broadleaf Forests 0 0.04 -0.35 0 0.05 0.22 
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Table 5. Most probable values ∆  of  the relative difference∆  and probabilities of  χ<∆−∆ || for 
different biome types, QA and disagreement level χ . 
 

  Most Probable Value Prob )|(| χ<∆−∆  

         QA=0 QA=1 QA=2 QA=0 QA=1 QA=2 

    0.15� =  0.25� =  0.15� =  0.25� = 0.15� =  0.25� =  

Grasses & Cereal Crops 0 -0.1 0 0.97 0.99 0.86 0.96 0.44 0.51 

Shrubs 0 0 0 0.68 0.68 0.32 0.32 1 1 
 -0.7 -0.7 - 0.32 0.32 0.68 0.68 - - 

Broadleaf Crops - 0 0 - - 0.71 0.71 0.6 0.71 
 - 0.4 - - - 0.04 0.04 - - 
 - 1.7 - - - 0.25 0.25 - - 

Savannas 0 0 - 0.71 0.81 0.57 0.7 - - 
 -0.6 -0.6 - 0.06 0.06 0.22 0.22 - - 

Broadleaf Forests 0 0 0 1 1 1 1 0.2 0.3 

  - - -0.45 - - - - 0.5 0.66 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Flow chart of the relationship between MISR LAI/FPAR algorithm and data. Pixel 

latitude and longitude information from the MISR Ancillary Geographic Product is used to 

reproject the MODIS biome classification map to the MISR SOM-j projection. The inputs, BHR 

and BRF from the MISR Level 2 Surface Parameters Product and the sun and view angles from 

MISR Geometric Parameters Product, are resorted according to biome type. The algorithm is thus 

executed on a biome basis. 
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(b) Grasses&Cereal Crops
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(c) Shrubs
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(d) Broadleaf Crops
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(e) Savannas
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(f) Broadleaf Forests
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Figure 2. Ratio of valid pixel number to total pixel number, in percentage. (a) All biomes, (b) 

Grasses and Cereal Crops, (c) Shrubs, (d) Broadleaf Crops, (e) Savannas, (f) Broadleaf Forests. 

There is no significant presence of needleleaf forests in Africa. The average ratio is shown in these 

plots as a dashed line. The maximum is for Shrubs (47%), and the minimum is for Broadleaf Forest 

(31.5%). 

Total Number of Pixels = 34130176 Total Number of Pixels = 5336410 

Total Number of Pixels = 5462043 Total Number of Pixels = 3998245 

Total Number of Pixels = 14567882 Total Number of Pixels = 4765596 

Average=45.6% Average=47.0% 

Average=47.0% Average=39.6% 

Average=44.7% Average=31.5% 
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Figure 3. Histograms of the difference between nominal and actual viewing angles. The maximum 

deviation is labeled for each camera.  
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Figure 4a. Distribution of pixel counts in the red and near-infrared DHR space for broadleaf forests 

biome. Pixels located around data peak (0.02, 0.36), may be interpreted as pixels characteristic of 

broadleaf forest biome type. 
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(b) Broadleaf Forests
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Fig. 4c 
 
 
 
 
 
 
 
 
Figure 4b and 4c. The mean and standard deviation of HDRFs at red and NIR wavelengths derived 

from pixels located around the data peak for: (a) Grasses & Cereal Crops, (b) Broadleaf Forests 
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Figure 4d. Mean and standard deviation of MISR BHR values from pixels near the data density 

maximum (there is no appreciable needleleaf forest presence in Africa). 
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(d) Broadleaf Forests
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(b) Grasses&Cereal Crops

0

2000

4000

6000

8000

10000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Coefficient of Variation

N
um

be
r 

of
 P

ix
el

s

Red

  

(e) Broadleaf Forests
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(c) Grasses&Cereal Crops
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(f) Broadleaf Forests
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Figure 5. Histogram of Standard Deviation/Mean of data from path 178 for 3 different days, orbit 

6393 (Mar 1, 2001), 6626 (Mar 17, 2001) and orbit 6859 (April 2, 2001). Plots are for grasses & 

cereal crops and broadleaf forests at Blue, Red and NIR bands. 
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Figure 6. Mean coefficient of variation of DHR at Red and NIR wavelengths derived from spatial 

and temporal analysis of MISR data. The data described in Figs. 4d and 5 are used to derive spatial 

and temporal variation in MISR surface reflectance. Labels TN and TR refer to the temporal, and 

SR and SN refer to the spatial coefficients of variation at Red and NIR spectral bands. 
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Figure 7a. Fraction of energy, (1-DHR), absorbed by the vegetated surface at Red and NIR 

wavelengths by different cover types. Pixels located around the data peak (see Fig. 4a) were used to 

derive values of (1-DHR). 
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Figure 7b. Adjusted single scattering albedos of different cover types used by the operational 

MISR LAI/FPAR software. 
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Figure 7c. Histogram of LAI values produced by the MISR algorithm using surface reflectances 

located around the data peak (see Fig. 4a). Single scattering albedos shown in Fig. 7b were used. 

Uncertainties in MISR BHRs and BRFs were set to 0.2 based on analysis presented in Figs. 5 to 6. 

The left curve is for grasses & cereal crops with peak probability at LAI = 1.5 (mean LAI = 1.27) 

and the right curve is for broadleaf forests with peak probability at LAI = 5.0.  
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Figure 8a. Retrieval index as a function of biome type and Quality indicator of the Algorithm (QA) 

for optimal set of relative uncertainties listed in Tables 1 and 2. Pixels located around the data peak 

and the six-biome classification map were used to derive values of the retrieval index. In this case, 

the retrieval index is the conditional probability of retrieving LAI value given the biome type. 
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Figure 8b. Biome identification index (BI) as a function of biome type and QA for the optimal set 

of relative uncertainties. Pixels for which the MISR algorithm retrieved LAI values using the six-

biome map and surface reflectance located around data peaks were used to evaluate the BI. 
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Figure 8c. Performance index (PI) as a function of biome type for optimal set of relative 

uncertainties. 
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Figure 9. Histograms of the relative difference between reference and retrieved LAI values for  

different biome type and QA. 
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Figure 10. (a) NDVI-LAI and (b) NDVI-FPAR regression curves for grasses and broadleaf forests, 

based on the MISR data. High quality retrievals (QA=0) were used to derive these curves.  
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Figure 11. NDVI-LAI regression curves for (a) grasses/cereal crops and (b) broadleaf forests for 

different values of QA. 

 


